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Abstract

The natural convection heat transfer and fluid flow in a vertical cylindrical envelope with constant but different

temperatures of the two end surfaces and an adiabatic lateral wall was numerically investigated. Apart from some other

applications, it serves as a simplified model of the pulse tube of a pulse tube refrigerator. The simulation was conducted

for two end wall temperature differences: DTw ¼ 10 and 220 K. For the cases of DTw ¼ 10 K, it is found that the

variation patterns of NuL vs. RaL within the range of L=D ¼ 3–10 are in good consistency with the experimental and

theoretical results provided by Catton and Edward for L=D ¼ 0–2:5. The C–E chart is thus extended from L=D ¼ 2:5 to

10. Within the range of RaL ¼ 1:1� 105 to 4 · 107 the fluid isothermals in both longitudinal and cross-sections exhibit

some laminated character, and the convective heat transfer rate is in the same order or one-order larger than that of

pure heat conduction. For the case of large temperature difference (DTw ¼ 220 K) the natural convection in the

enclosure is quite strong in that the convective heat transfer rate is about two-orders larger than that of pure heat

conduction which occurs when the cold end is placed down. To reduce the loss of cooling capacity of the pulse tube

refrigerator, the pulse tube should be positioned with cold end down. Numerical simulation also revealed that the ratio

of the axial length, L, to the diameter, D, has effect on the average heat transfer rate of the envelope under the same

other conditions. Within the range of L=D ¼ 1–9, the increase in L=D leads to the decrease in heat transfer rate.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in enclosures is a kind of classical

problems in heat transfer and numerical heat transfer,

and many experimental and theoretical studies have

been performed, to name a few, Refs. [1–7] are exam-

ples. However, most of the previous investigations were

conducted for rectangular enclosures or annulus, a few

investigations were conducted for a long cylindrical

envelope with an adiabatic lateral wall. Yet such con-

figuration does exist in engineering applications. One
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typical example is the pulse tube of pulse tube refriger-

ator. Pulse tube refrigerator is an attracting cryocooler

of small capacity widely used in aerospace engineering

and for military purpose. The pulse tube itself is a long

tube with an inner diameter ranging from several milli-

meters to tens millimeters. And the ratio of its length to

diameter is usually around 10. Its two ends can be re-

garded as two isothermal surfaces, with its hot end kept

at room temperature and the cold end being as low as

80 K, respectively. The pulse tube usually was made of

materials with low thermal conductivity and as a first

approximation the lateral wall of the tube may be re-

garded as adiabatic. It may be connected with the

pressure wave generator by a long flexible tube with

a length of 10 m. Such flexible connectivity between

compressor and the cold end allows one to change the
ed.
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Nomenclature

a fluid thermal diffusivity

cp specific heat at constant pressure

D diameter

g gravitational acceleration

GM cross-sectional axial flow rate

h heat transfer coefficient

L length of the cylinder

Nu Nusselt number

p pressure

Pr Prandtl number

q heat flux

Q heat transfer rate

r radius

R cylinder radius

RaL gbðTh � TcÞL3=ðamÞ
S source term

SMAX maximum absolute value of mass flow rate

residual of control volume

SSUM summation of mass flow rate residual of all

control volume in the computational do-

main

T temperature

u, v, w velocity component in circumferential,

radial and axial coordinate

z axial coordinate

Greek symbols

b volume expansion coefficient

C nominal diffusion coefficient

DT temperature difference

k fluid thermal conductivity

g fluid dynamic viscosity

m fluid kinetic viscosity

h inclination angle

q fluid density

/ general variable

u circumferential angle

Subscripts

c cold

cond conduction

conv convection

f fluid

h hot

m mean

w wall

Fig. 1. Three dimensional cylindrical coordinates and the

envelope studied.
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orientation of the pulse tube. The fluid flow in the pulse

tube system is oscillating, with frequency ranging from

2 to 10 Hz. The different orientation of the pulse tube

leads to different relative positions of the hot and cold

ends, which may cause to natural convection in the

enclosure when the frequency is low. A pulse tube may

be modeled by a cylindrical envelope described in Fig. 1,

where the origin of the z coordinate is fixed at the hot

end and h is the angle between the axis of the pulse tube

and the gravity. When h ¼ 0, the hot end is up and the

cold end is down; while for h ¼ 180�, the situation is the

opposite. Since for the case with hot end up, the heat

transfer in the cylinder is inherently a conduction

dominated process, in this paper, only the position with

the hot end down is investigated. As a first approxima-

tion, in the low frequency region (say several hertz), the

natural convection and the forced convection flow are

assumed to be additive. Hence, the natural convection in

such pulse tube may be studied separately from oscil-

lating flow.

A search of literature only revealed a limited number

of related work. Catton and Edwards [1,2] did theoret-

ical and experimental investigations for the natural

convection in vertical cylinders heated from below, and

provided a general chart, showing the variation patterns

of Nusselt number with RaL and L=D (hereafter it will be

called Catton–Edwards chart, or C–E chart, for sim-
plicity). Their study was limited within L=D6 2:5 and

low temperature difference between hot and cold walls.

In the work of Thummes et al. [8] investigation was
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conducted for a real PTR and a profound effect of the

natural convection in the pulse tube on the cooling

capacity of a PTR was reported. In [6,7] detailed

numerical simulations for the natural convection in a

tilted long cylindrical envelope with adiabatic lateral

surface were performed, and many peculiar character-

istics of convergence process, fluid flow and heat transfer

were revealed. However, the studies reported in [6,7]

were focused on L=D ¼ 9 and h < 180�.
The purposes of the present study is to perform three

dimensional numerical simulation for the natural con-

vection in vertical cylindrical envelopes with adiabatic

lateral surface, two isothermal end walls and variable

L=D from 1 to 10. The flow in the envelope is assumed to

be developed by gravitational force only because of

the difference in the fluid density. We do not adopt the

Boussinesq assumption, rather, the variation of the

thermal properties with temperature are fully taken into

account. We take a basic simulation prototype from a

pulse tube cryocooler investigated in [9]. For compari-

son purpose and for extending the C–E chart, compu-

tations will be performed for cases with two levels of

hot-cold temperature difference, 220 and 10 K, and with

L=D varied from 1.0 to 9 for 220 K case and 1–10 for

10 K case.

In the following, the governing equations of the

physical problem will be presented first, followed by the

numerical methods and some special features of this

study. Then numerical results will be provided in detail

for the two temperature difference levels. Finally some

conclusions will be made.
2. Governing equations and numerical methods

The three dimensional equations for steady-state

fluid flow and heat transfer in a cylindrical envelope with

variable thermal properties take following form:
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where / is the general variable, representing u, v, w and

T , C is the general diffusion coefficient, and S is the

general source term. For u, v, w, C ¼ g, while for T ,
C ¼ g=Pr. For a case with variable thermophysical

properties, the general source term for different variables

takes following form:
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mass conservation law expressed by
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we can obtain following simplified forms for the source

terms:
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As can be seen from Fig. 1, the fluid flow and heat

transfer are symmetric about the vertical plane through

the cylinder axis. Therefore only half of the cylindrical

space is taken as the computational domain with the

vertical plan through the cylinder axis (where u ¼ 0 or

p) as a symmetric boundary.

The boundary conditions are as follows:

For u, v, w, at all solid walls, u ¼ v ¼ w ¼ 0; at u ¼ 0

or p, u ¼ 0;
ow
ou

¼ ov
ou

¼ 0.

For T , T ¼ Th at z ¼ 0; T ¼ Tc at z ¼ L; at r ¼ R,
oT
or

¼ 0. At u ¼ 0 or p,

oT
ou

¼ 0 ð5Þ

3. Numerical methods

The governing equations are discretized by the finite

volume method with practice B in a staggered grid sys-

tem [10,11]. The diffusion and convection terms are

discretized by the power-law scheme. The segregated

solution algorithm, SIMPLE, is adopted. The energy



Fig. 2. GM vs. iteration number: (a) L=D ¼ 9, DT ¼ 220 K,

and RaL ¼ 1:596� 1010; (b) L=D ¼ 8, DT ¼ 10 K, and RaL ¼
2� 107.
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equation is solved simultaneously with the momentum

equations. The resulting algebraic equations are solved

by the successive line under relaxation method [11]. The

boundary conditions are treated by the additional

source term method [11] in which the heat flux (includ-

ing the zero heat flux) at the wall is treated as an addi-

tional source of the control volume neighboring with the

boundary. The grids are distributed uniformly in the

radius and circumferential directions, while in the axial

direction, non-uniform distribution is adopted with

more grids clustering near the two end walls [6].

The temperature gradient at the hot and cold walls are

determined by three-point second-order accurate dis-

cretized equation. The grid-independent examination

was conducted for the case of the largest temperature

difference (220 K) and L=D ¼ 9. Nine grid systems were

used. They are 13(r) · 13(u) · 48(z) (8112 in total), 15 ·
15· 60 (13,500 in total), 18· 18 · 64 (20,736), 19· 19· 74
(26,714), 20· 20· 80 (32,000), 20· 20· 90 (36,000),

22· 22· 90 (43,560), 22 · 22 · 100 (48,400), 22· 22· 110
(53,200), and finally 30 · 30 · 150. It is found that starting

from the grid system of 20 · 20 · 80 the variation of the

average heat transfer rate with grid number becomes

trivial, with about 3.3% change from 20 · 20 · 80 to

30· 30· 150. The computational time for the later case is

more than ten times of that of 20· 20· 80 grid system.

Thus considering both the accuracy and economics, the

grid system with 20 · 20· 80 grid points is adopted for

the cases of L=D ¼ 9 and DT ¼ 220 K. In our serial

computations for L=D ¼ 1–10, the grid number in the

radius and circumferential directions were always kept at

20· 20, while the grid number in z-direction varied from

30 to 100.

For the case of large temperature difference (�220

K), the problem is a highly non-linear one in that the

thermophysical properties varies significantly along the

axial direction. From [12] it can be found that within

the envelope the thermal physical properties varies from

2.35 (thermal conductivity) to 3.75 times (density). This

makes the convergence of the iterative procedure very

difficult. After quite a few preliminary computations, it

is found that the cross-sectional axial flow rate, sym-

bolized as GM, is an important index to judge the

convergence for cases of both large and small end tem-

perature difference

GM ¼ 1

N

XN
k¼1

Z
Xk

qði; j; kÞabsðwði; j; kÞÞrdrdu ð6Þ

Obviously, GM is the section-average axial flow rate.

Two corresponding figures for the cases of L=D ¼ 9,

DT ¼ 220 K and L=D ¼ 8, DT ¼ 10 K are presented in

Fig. 2. From figure it can be seen that for the small DT
case the value of GM approaches constant after about

1500 iterations, while for the case of large temperature

difference, after 18,000 iterations, GM keeps almost
constant in about consecutive 300 iterations. Beyond

that region it changes continuously and never ap-

proaches constant again within 40,000 iterations. As

discussed in [6] this may be caused by the highly non-

linear character of the problem. According to such

special feature of iteration process, we select following

criteria to judge the convergence of the iterative process

for the large temperature difference cases:

(1) the cross-sectional average axial flow rate GM has

been beyond the summit of GM–ITER curve and

approaches almost constant within 100 iterations;

(2) the relative change in mean heat transfer rate be-

tween two consecutive iterations is less than

1.0· 10�4;

(3) SMAX/GM 6 1.0· 10�6;

(4) Abs(SSUM/GM) 6 1.0 · 10�7,

where SMAX is the absolute maximum value of control

volume mass residual, while SSUM is the mass residual

of the whole computation domain.

For small temperature difference cases, to compare

our numerical results with C–E chart, emphasis was put

on the Nusselt number variation with RaL, thus condi-
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Fig. 3. Convergence process of heat transfer rate: (a) NuL vs.

ITER, L=D ¼ 8, DT ¼ 10 K, and RaL ¼ 2� 107; (b) relative

heat balance with ITER, L=D ¼ 8, DT ¼ 10 K, and RaL ¼
2� 107.
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tion (2) was replaced by that the relative change of NuL
between consecutive 40 iterations is less than 1.5 · 10�4,

and one more condition is added that the relative dif-

ference of heat transfer rates at the two ends is less than

5%. The typical variation process of the two parameters

with the iteration number are shown in Fig. 3 for

L=D ¼ 8.

Numerical simulations were performed for two series

of situations, one with DT ¼ 10 K (L=D ¼ 1:0–10:0), the
other with DT ¼ 220 K (L=D ¼ 1:0–9:0). Although for

the first series of situation, the Boussinesq assumption

may be used, for the generality of the code developed in

our computation the variation of fluid properties with

temperature were still taken into account. To make the

Rayleigh number, RaL, varying in a certain range while

kept the ratio of L=D constant, the dimensional value of

the tube diameter was changed accordingly. In the sec-

ond series of computation the PTR described in [9] was

taken as its basic mode and the tube diameter was kept

constant (27.8 mm). The variation of L=D was imple-

mented via changing the axial length.

In the following, the heat transfer rate (or Nusselt

number), temperature and velocity distributions in the

enclosures will be presented. The more than 90 numer-

ical cases give too much details of velocity and temper-
atures distributions to be presented in one paper. We

picked up five representative cases for presenting the

major results. For simplicity of presentations, the five

cases are named A, B, C, D and E as follows:

4. Results and discussion

4.1. Results for small temperature difference (case A, B, C

and D)

4.1.1. Variation of NuL with RaL
For small DT case computed heat transfer results are

presented via the curve of NuL vs. RaL, where NuL and

RaL take the axial length of the cylinder as the charac-

teristic length. Actually, the value of NuL is the ratio of

natural convective heat transfer rate to the pure heat

conduction through the enclosure. This can be seen

easily from following expression:

qconv ¼ hDT ¼ NuL
L

kfDT ¼ NuL
kfDT
L

� �
¼ NuLqcond

ð7Þ

The computational results are plotted in the C–E

chart (Fig. 4), where below L=D ¼ 2:5, our numerical

results (smaller black circles) are overlapped with the

experimental and analytical results. It can be observed

clearly that the NuL–RaL variation patterns of our

numerical data are very consistent with the analytical

and experimental results provided by Cartton and Ed-

wards in [1,2]. The major features of this chart can be

summarized as follows. (1) With the increase of the

value of L=D, the critical Rayleigh number increases

below which the heat transfer in the enclosure is domi-

nated by pure heat conduction. (2) For a fixed L=D, with
increasing Rayleigh number, the Nusselt number curve

climbs up and gradually approaches the curve for zero

L=D. In Fig. 4, the solid line was the analytical solution

provided by Cartton–Edwards. The white circles are the

experimental data of Cartton and Edwards, and all

other symbols are our numerical results. The dashed

lines are outlined by our numerical results. (3) The larger

the value L=D, the steeper the curve of NuL–RaL,
implying the more profound effect of Rayleigh number

on Nusselt number. (4) In the range of L=D and RaL
studied, the ratio of natural convection heat transfer rate

within the enclosure over that of the pure heat con-

duction ranges from 1 to 25 under the same end wall

Case

name

A B C D E

L=D 9 9 3 3 9

DT , K 10 10 10 10 220

RaL 4 · 107 1.4 · 107 1· 106 1.4 · 105 1.596· 1010



Fig. 4. Extended Cartton–Edwards chart.
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temperature difference. For a fixed RaL, the smaller the

L=D, the larger the ratio.

4.1.2. Temperature distribution

The cross-sectional average fluid temperature distri-

butions along the z-axis are presented in Fig. 5 for

L=D ¼ 3 and 9. For the convenience of presentation, the

vertical plane is put horizontally with the hot end being
Fig. 5. Sectional average longitudinal fluid temperature dist
positioned at the left. This practice will be used later and

will not be restated again. It can be seen that with the

increase in Rayleigh number, the cross-sectional average

fluid temperature becomes more uniform in the major

part of the cylinder, and only in the vicinity of the

two ends, steep temperature gradient exists. Obviously,

when there is no convection in the cylinder, the axial

fluid temperature distribution will be a straight line,
ribution: (a) case D; (b) case C; (c) case B; (d) case A.
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descending from the hot end to the cold end. The effect

of the natural convection is to make the fluid tempera-

ture in the center part of the cylinder more or less uni-

form, and the stronger the convection, the more uniform

the temperature distribution in the center part of the

cylinder. In Fig. 6, the fluid temperature distribution in

the longitudinal section is presented. The effect of the

natural convection can be observed more clearly. For

small Rayleigh number (Ra ¼ 1:4� 105), the stratified

character of the isothermals is quite clear as shown by

Fig. 6(a), while for Ra ¼ 1:0� 106, the isothermals be-

come almost vertical to the end wall in the major part of

the cylinder, and only in the vicinity of the two ends, the

isothermals are parallel to the end wall and become very

crowded (Fig. 6(b)). Such variation patterns are con-

sistent with the cross-section average fluid temperature

variation curve shown in Fig. 5. For the cases A and B,

similar results are obtained and presented in Fig. 6(c)

and (d). It can be seen that in the vicinity of the two ends
Fig. 6. Fluid temperature distribution in the longitudinal section of the

(c) Ra ¼ 1:4� 107 (case B); (d) Ra ¼ 4� 107 (case A).
the isothermal are more crowded than that for case C

and D (note, in Fig. 6(c) and (d) the two geometric

dimensions are not in scale for the clarity of graphic

presentation, and the same practice will be adopted in

the later presentation of results for L=D ¼ 9). The iso-

thermal in the middle transverse section is presented in

Fig. 7(a) and (b) for L=D ¼ 3. The almost parallel iso-

thermals reflect the characteristics that the fluid streams,

flowing from the bottom hot end toward to the top cold

end in half of the vertical cylinder and recirculating from

top cold end to the bottom hot end in the other half of

the cylinder, are more or less laminated in terms of fluid

temperature. In the transverse sections near the hot and

cold ends, isothermal distributions are shown in Fig. 7(c)

and (d) for case B. Apart from the difference in tem-

perature level, the isothermals near the hot end exhibits

some special features. As indicated above, a global cir-

culation exits in the entire cylindrical envelope. In half of

the cylinder, fluid goes up and in the other half it goes
cylinder: (a) Ra ¼ 1:4� 105 (case D); (b) Ra ¼ 1� 106 (case C);



Fig. 7. Cross-sectional fluid isothermals for L=D ¼ 3 and 9: (a) middle cross-section, Ra ¼ 1:4� 105 (case D); (b) middle cross-section,

Ra ¼ 1:0� 106 (case C); (c) near the hot end ðL=D ¼ 9Þ; (d) near the cold end ðL=D ¼ 9Þ.
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down. At the same axial cross-section, the fluid tem-

perature in the upward part is obviously higher than

that in the downstream part. Such kind of feature can be

clearly observed in Fig. 7(c), where the downstream fluid

isothermal consists of a series of circles, centered by the

one with T ¼ 296:811 K, while the temperatures of the

upstream fluid are basically at the level of 298 K. Fig.

7(d) exhibits the same feature with less difference be-

tween the upstream part and the downstream part. The

global circulation will be observed more clearly from the

following presentation of velocity fields.
4.1.3. Velocity distribution

Velocity vectors in the longitudinal section for the

four cases are presented in Fig. 8, where the global cir-

culation of the stream can be clearly observed. This

global circulation is composed of two branches: one with

higher temperature and going upward and the other

with lower temperature going downward. Apart from

this global circulation, some local small recirculations

exist. This can be found from the velocity distribution

near the hot and cold end. Fig. 9 provides such pictures

for the case A, where two small recirculations can be



Fig. 8. Longitudinal velocity distribution of cases A, B, C and D: (a) Ra ¼ 1:4� 107 (case B); (b) Ra ¼ 4� 107 (case A); (c)

Ra ¼ 1:4� 107 (case D); (d) Ra ¼ 1:0� 107 (case C).
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spotted. The longitudinal section is the symmetric

surface, where the circumferential component, i.e., u-
component, equals zero. At the other locations of any

cross-section, u-component exits, making the flow pat-

tern three dimensional. In Fig. 10, the velocity distri-

butions at nine cross-sections of case A are presented for

illustration. In order to easily identify the velocity

direction, the circumferential grid lines are reserved. It

can be seen that the fluid flow at the nine cross-sections

does not form a closed circulation. The fluid either goes

upward or downward to form a local closed circulation,

making the flow pattern quite complicated. Because

of such multi-vortex structure of the flow field, the

fluid possess circumferential velocity component, even

though from the vertical geometry, only axial and radial

velocity components can be easily expected. Such

seemingly abnormal phenomenon is probably an inher-

ent character of the natural convection in enclosures.

For example, Powe et al. [13] found experimentally that
for the natural convection in cylindrical annuli, the flow

pattern is not symmetric to the vertical axis when the

Rayleigh number is within a certain range, even though

the geometry and the boundary conditions are sym-

metric about the vertical axis.

4.2. Results for large temperature difference (case E)

4.2.1. Heat transfer rate and sectional average axial flow

rate

The Rayleigh number of case E is about three-order

larger than that of case A (Table 1), even though case A

and E have the same dimensional axial length. From the

definition of Rayleigh number, Ra ¼ ðq2gbDTL3=g2ÞPr,
the large difference in RaL comes from the difference in

DT and thermal physical properties. The natural con-

vection in the enclosure of case E is much stronger than

that of case A, as can be witnessed from the difference in

the axial flow rate GM, for case A GM ¼ 4:562� 10�6



Fig. 9. Detailed longitudinal velocity distribution near two

ends of case A: (a) flow pattern near the cold end; (b) flow

pattern near the hot end.
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kg/s, while for case E GM ¼ 8:739� 10�5 kg/s. The

predicted values of NuL, heat transfer rate and pure heat
conduction rate of the fives cases are listed in Table 1,

where the pure heat conduction was computed from the

1-D heat conduction equation assuming that the trans-

port process was pure diffusive between the hot and cold

ends and the mean fluid thermal conductivity was used.

The mean thermal conductivity was determined from

volume average one of the entire domain.

Velocity and isothermal distributions in the longitu-

dinal and cross-sections for case E reveal that the flow

pattern of case E is much more complicated than that of

case, A, characterized by a multi-vortex structure in

both longitudinal and transverse sections imposed on

the global circulation between the hot and cold ends.

Such distributions were partially presented in [7], and

interested readers may consult that reference. In the

following only the effect of L=D on heat transfer rate is

presented.

It worth noting that the Rayleigh number based on L
for case E is as high as 1010, a question may arise as

whether the laminar model is appropriate for this situ-

ation. For rectangular enclosure with two opposing

vertical walls maintaining at constant but different

temperatures, the fluid flow starts from very low Ray-

leigh number (much less than 1000) and the laminar flow

usually restricted below RaL < 108 [4]. For the case

studied, however, the driving force of the flow––tem-

perature difference comes from the top and bottom walls

and the lateral wall is assumed to be adiabatic. Then

from extended C–E chart, it can be seen that the fluid

will keep still until the Rayleigh number based on the

enclosure height becomes larger than a certain value.

For example, for L=D equals 10, this value is as high as

107. Thus it is the authors’ believe that three-order in-

crease in the Rayleigh number will not make the flow to

be turbulent.

4.2.2. The effect of L=D on the heat transfer rate

From heat transfer point of view, it is interesting to

reveal the effect of L=D on the heat transfer in the

envelope with the same temperature difference between

hot and cold ends (220 K) and the same tube diameter.

Computations were conducted for other eight situations

with L=D varying from 8 to 1. The average heat transfer

rate in the envelope for different L=D situations are

presented in Fig. 11(a). As seen there, the increase in

L=D leads to the decrease in the average heat transfer

rate. In the L=D range studied, this decrease is caused by

the fact that the increase of the space distance between

the hot and cold ends actually leads to a weaker fluid

flow under the same driving force of temperature dif-

ference.

In Fig. 11(b) and (c), the section average fluid tem-

peratures are presented for L=D ¼ 1 and 9, respectively.

Two features may be noted. First, near the two ends, the

temperature gradients are very large, because heat is

transferred just by conduction at the end walls. Second,
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Fig. 10. Velocity distributions at nine cross-sections of case A (L=D ¼ 9, Ra ¼ 4� 107): (a) z ¼ 0:011 m; (b) z ¼ 0:032 m; (c) z ¼ 0:059

m; (d) z ¼ 0:087 m; (e) z ¼ 0:119 m; (f) z ¼ 0:15 m; (g) z ¼ 0:18 m; (h) z ¼ 0:21 m; (i) z ¼ 0:239 m.
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the temperature gradient near the cold end is apprecia-

bly larger than that of hot end, because the large dif-
ference in the fluid thermal conductivity near the two

ends. It is to be noted that, for the situation of L=D ¼ 1,
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the height of the envelope is 1/9 of that for L=D ¼ 9, thus

the end wall temperature gradient of L=D ¼ 1 is actually
larger than that of L=D ¼ 9, reflecting the larger heat

transfer rate of the shorter envelope.



Table 1

Predicted Nusselt number and heat transfer rate

Case A B C D E

RaL 4· 107 1.4 · 107 1· 106 1.4 · 105 1.596· 1010
NuL 24.06 8.22 8.08 1.597 105.48

Qconv, W 7.572· 10�3 9.774· 10�4 8.919· 10�3 7.185· 10�3 4.388

Qcond, W 2.06· 10�3 2.734· 10�4 3.656· 10�3 1.896· 10�3 2.838· 10�2

Y.L. He et al. / International Journal of Heat and Mass Transfer 47 (2004) 3131–3144 3143
5. Conclusions

The natural convection in a vertical cylindrical

envelope with top and bottom ends maintained at lower

and higher temperatures and the lateral surface adia-

batic was simulated by three dimensional model with

varying thermophysical properties. Two levels of the end

temperature difference, DTw ¼ 10 and 220 K, were sim-

ulated. The major findings are as follows.

1. For the small DTw cases (A, B, C and D), numerical

results of the Nusselt number for L=D from 3 to 10

are in good consistency with the experimental and

theoretical results provided by Catton and Edward.

And the C–E chart is extended from L=D ¼ 2:5 to

10. The two important features of the C–E chart

are (1) the larger the ratio of L=D, the more profound

the effect of RaL on NuL; (2) within the range of L=D
studied, with the increase in Rayleigh number the

value of NuL gradually approaching the theoretical

results obtained for L=D ¼ 0.

2. For the small DTw cases studied (RaL ¼ 1:1� 105 �
4� 107), there is a global circulation between the

hot and cold ends, accompanied by some local recir-

culations in the envelope. Generally speaking, the

natural convection is not very strong in that the con-

vective heat transfer rate is about the same order, or

one-order larger than that of pure heat conduction,

and the flow structure is not very complicated charac-

terized by a global circulation accompanied by some

local recirculation in longitudinal section. Hence the

fluid temperature isothermals both in longitudinal

section and cross-section exhibit some regularly lam-

inated character.

3. For case E, it is found that the heat transfer rate is

about two-orders larger than that of the pure heat

conduction. Thus for the device like pulse tube refrig-

erator, the operational position of the pulse tube is

recommended to be positioned with cold end down

in order to reduce the loss of the cooling capacity.

4. For the large temperature difference case, with the

decrease in L=D, the average heat transfer rate

increases. This also gives some hints for relative

devices in order to reduce the loss of energy to the

environment by natural convection in enclosure.
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